
Proceedings of the 2023 Winter Simulation Conference 

C. G. Corlu, S. R. Hunter, H. Lam, B. S. Onggo, J. Shortle, and B. Biller, eds. 

MODELING REACTIVE GAME AGENTS USING THE CELL-DEVS MODELING 

FORMALISM 

 
 

Alvi Jawad 

Cristina Ruiz Martin 
Gabriel Wainer 

 
Department of Systems and Computer Engineering 

Carleton University 
1125 Colonel By Drive. 

Ottawa, ON, K1S 5B6, CANADA 
 

 

ABSTRACT 

Intelligent game agents are vital to modern games as they add life, story, and immersion to the game 
environment. The requests in the gaming industry for more realism have made intelligent agents more 

important than ever. Modeling and simulation of game agents and their surrounding environment provide 
an alternate setting to study dynamic agent behavior before integration into the game engine. The Cell-
DEVS formalism, an extension of Cellular Automata, allows modeling such behaviors using the rigorously 
formalized Discrete Event Systems Specification (DEVS) formalism. This paper explains how to model 
and test reactive game agents using the Cell-DEVS formalism and the CD++ toolkit. To analyze the 
dynamic behavior of such agents, we perform several experiments in varying system configurations. Our 

experimental results confirm the versatility of Cell-DEVS and the functionalities in the CD++ toolkit to 
model comfort-driven, exploratory, and desire-driven game agents. 

1 INTRODUCTION 

Game agents are indispensable entities that allow games to add lifelike immersion inside a virtual 
environment. Intelligent agents are the fundamental building blocks of any game, as the level of intelligent 
behavior determines the amount of realism the game can provide to the player. Many games, particularly 

those that make extensive use of autonomous agents, have grown increasingly complex over time. 
Consequently, the need to improve the agent behavior to match the entities they mimic from the real world 
has become necessary. While many games have aged well over the years, others have lost their popularity 
and player base due to not keeping up with this increased demand for realism (Sweetser, Johnson, Sweetser, 
and Wiles, 2003). 

The virtual nature of game environments turns actual experiments to study agent behavior into an 

impossible task. This, in turn, makes modeling and simulation a prime candidate to experiment on and 
improve such behavior. Game agents have been modeled using many different mathematical formalisms, 
including game theory and finite automata (Carmel and Markovitch 1996), cellular automata (CA) and 
influence maps (Sweetser and Wiles, 2005), reactive planners (Weber et al. 2011), and reinforcement 
learning (Vinyals et al. 2019), among others. Mathematical models allow the use of formal methods to 
verify the model correctness and easy alternation of parameters to see variations in agent behaviors. 

Additionally, this allows formally defined models to be easily translated to a different mathematical 
formalism and allows continuous improvements to the model. 

A system-theoretic modeling formalism, named Discrete Event Systems Specification (DEVS) (Gon, 
Zeigler, and Praehofer, 2000), has been widely applied for modeling and simulating artificial systems. 



Jawad, Ruiz-Martin, and Wainer 
 

 

DEVS allows building single system components as modular atomic models and connecting multiple 
atomic and/or coupled models hierarchically to define complex models. An extension of DEVS, called Cell-
DEVS, allows asynchronous modeling of timed cellular automata models (Wainer and Giambiasi, 2001). 

The content-sharing and interoperability advantages of Cell-DEVS have proven that serious games can be 
enhanced from the rigorous formalization and standardization provided by developing the models using 
DEVS or its extensions (Wainer, Liu, Dalle, and Zeigler, 2010). 

Our objective is to demonstrate the use of Cell-DEVS and the associated CD++ toolkit (Wainer, 2002; 
Lopez and Wainer, 2004) to model and design intelligent game agents that react to changing game 
environments under varying system configurations to gain insight into developing highly intelligent game 

agents. More specifically, our contributions are as follows: (1) Definition of a cellular automata model of 
reactive game agents in the Cell-DEVS modeling formalism; (2) Simulation of a multi-terrain game system 
and observation of the comfort-driven, exploratory, and desire-driven behavior of reactive game agents 
under varying system configurations; (3) Analysis of the conflicting interplay between desire and comfort 
for intelligent decision-making. 
 The results are useful to understand complex, and often contradictory, behavior of game agents when 

multiple incentives in a game terrain are present as potential objectives. In turn, this knowledge can inform 
analyzing flexible decision-making for intelligent game agents in intricate game environments. 

The rest of the paper is organized as follows. Section 2 presents the background and the modeling 
formalism used for this research. Section 3 provides a formal description of the reactive agents’ model. 
Section 4 details simulations performed using the developed model with various agent behavior. Section 5 
presents the conclusions and directions for future research. 

2 BACKGROUND 

Agents are a crucial part of game worlds. They represent individual non-player characters (e.g., villagers, 
monsters, allied soldiers, enemies) with distinct personalities and behavior that give the game life, story, 
and atmosphere. In many cases, agents are hard-coded based on the previous knowledge of the designer but 
not in the current state of the environment (Sweetser and Wiles, 2005). Although some agents may seem 
intelligent, as in Half-Life and Thief: The Dark Project, they are still hardcoded and look into a database of 

rules. Other techniques, such as “Smart Terrain” are used in The Sims, where intelligence is embedded in 
the environment and agent behavior is emergent based on the needs and the environment. Each agent has 
various motivations, and objects in the environment provide information on how they satisfy those needs. 
 This sets the grounds for the concept of reactive game agents, which are flexible living entities that can 
react to changes in their surrounding environment. In (Sweetser and Wiles, 2005), the authors elaborate on 
this concept by designing the agents by combining influence maps with cellular automata to represent a 3D 

game world named EmerGEnT. The game models natural phenomena such as fluid flow, heat, fire, 
pressure, and explosions. The agents in EmerGEnT are able to react and move based on their comfort and 
desire levels with various reaction times and exhibit different levels of intelligent behavior. Other works on 
intelligent game agent behavior explore game-theoretic approaches to build adaptive agents that can infer 
opponent strategies (Carmel and Markovitch 1996), real-time execution and concurrent goal pursuit using 
reactive planners (Weber, Mateas, and Jhala, 2011), and multi-agent reinforcement learning algorithms that 

can allow game agents to rival human player at a Grandmaster level in complex real-time strategy games 
such as StarCraft II (Vinyals et al. 2019).  

In this work, we elaborate on (Sweetser and Wiles, 2005) by introducing Cell-DEVS to formally model, 
design and analyze the comfort-driven, exploratory, and desire-driven behavior of reactive game agents. 

2.1 The Cell-DEVS Formalism 

The Cell-DEVS formalism (Wainer and Giambiasi, 2001) is an extension of DEVS that defines systems as 

cellular models using the same semantics used in the DEVS formalism (Gon, Zeigler, and Praehofer, 2000). 
Each cell in the cell space is specified as a DEVS atomic model, as shown in Figure 1(a). A cell takes N 



Jawad, Ruiz-Martin, and Wainer 
 

 

inputs from all cells in a specified cell neighborhood through its interface. Inputs activate the local 
computing function (τ) that, after a predefined delay (d), produces a state change (s'). This changed state 
may then be transmitted to other models through the cell interface. Delays belong to one of two types: 

transport and inertial delays. Transport delays model variable time delays and may schedule outputs in a 
queue. In the case of inertial delays, the output is preempted, meaning a newly computed value can 
overwrite all previously scheduled events in case of a state change. 

Figure 1(b) shows a coupled Cell-DEVS model built after defining the connections between an atomic 
model and its neighbors. More than one atomic model can be defined to compose a coupled Cell-DEVS 
model, where each atomic model is connected to its neighborhood through input and output ports, similar 

to that of DEVS coupled models. The entire cell space is an R x C grid, where R denotes the number of 
rows, and C denotes the number of columns. The cell space can also have more than two dimensions. The 
cell space can be wrapped or non-wrapped (i.e., different behavior defined for border cells), resulting in a 
uniform and non-uniform neighborhood. 

(a) (b)  
Figure 1: Cell-DEVS model semantics. (a) Atomic model; (b) Coupled model 

2.2 The CD++ Toolkit 

CD++ (Wainer, 2002; Lopez and Wainer, 2004) is a modeling and simulation environment based on the 
C++ programming language. In CD++, Cell-DEVS models are implemented using a custom specification 
language. The CD++ specification includes (1) the size and the dimensions of the cell space, (2) the shape 
of the neighborhood, (3) the number and initial values of state variables, (4) the definition of neighbor ports, 

(optional), and (5) any rules for cells and border cells’ behavior.  
A cell’s local computing function is defined using a set of rules in the following format: 

{postconditions} {assignations (optional)} {delay} {preconditions} 

If the preconditions defined for a particular rule are satisfied, after the specified delay for the 
rule, assignations to state variables will be made (optional), and then the postconditions will be 
evaluated, usually resulting in one or more port assignations so the current state of the cell, as well as any 

output messages, can be sent via the defined neighbor ports.  
New rules are evaluated sequentially after the failure of the previous one. If no rules apply for a cell in 

the cell space, or more than one rule applies, an error will be produced indicating the conflicting behavior 
of cells. This simple syntax allows one to define both simple and complex behavior of cells, giving them 
the flexibility to model increasingly complicated hierarchical cellular models. 

3 THE REACTIVE AGENT MODEL 

To demonstrate the use of Cell-DEVS and the CD++ toolkit to model, design, and analyze reactive agents, 
we define a game environment as 10 x10 cell space. Each cell in the game environment represents a terrain 
of a particular type with different levels of fire, wind, and water attributes (Table 1), resulting in a 
corresponding value of heat, pressure, and wetness for an agent if they stand on that cell.  

Based on the values of heat, pressure, and wind, we divide the terrains into three different categories: 
(1) fire-attribute terrains (volcano, lava, heated), (2) wind-attribute terrains (tornado, gust, breeze), and (3) 

water-attribute terrains (river, storm, drizzle). The nine different terrain types and associated heat, pressure, 
and wind values are represented in Table 1. The values used for each terrain are fictional and are assigned 
to see different agent behavior in different terrains. In addition to these terrain types, each cell has specific 
properties that lead to that cell having certain desirability for an agent. It is important to note that the primary 



Jawad, Ruiz-Martin, and Wainer 
 

 

contribution of this work is not the simplified game design but the method to design the agents’ behavior 
and how they are implemented in CD++. 

Table 1: Cell values for different terrain types. 

 Terrain  Symbol Cell type Heat Pressure Wetness 

Fire 

Attribute 

Terrains 

Volcano v 0.001 100 50 0 

Lava l 0.002 80 30 0 

Heated h 0.003 40 20 20 

Wind 

Attribute 

Terrains 

Tornado t 0.004 0 100 40 

Gust g 0.005 0 60 20 

Breeze b 0.006 0 30 10 

Water 

Attribute 

Terrains 

River r 0.007 0 20 100 

Storm s 0.008 20 60 70 

Drizzle d 0.009 0 10 40 

 

Figure 2 shows the game’s terrain that we use to analyze the reactive agents' emergent behavior. Each 
cell contains the cell coordinates and the type of cell as specified in Table 1. Fire-Attribute terrains are 

represented in various shades of red. Similarly, Wind-Attribute and Water-Attribute terrains are in shades 
of yellow and blue, respectively. To be consistent, the same terrain will be used in all the experiments. 

 
Figure 2: Game terrain.  

We design two types of reactive agents: (1) Comfort-Driven Agents and (2) Desire-Driven Agents. 
Comfort-Driven Agents are driven by their level of comfort based on the attributes of each cell. For 

example, human agents may feel the most uncomfortable if they stand on a fire-attribute cell but deal well 
with wind and water-attribute cells. On the other hand, a fiery monster may feel perfectly fine on a fire-
attribute cell but might die instantly if forced to stand on a water-attribute cell. We assign weights to heat, 
pressure, and wetness, allowing us to easily alter the agents’ comfort preferences and model many different 
agent types. Each agent, while standing atop a particular cell, determines their current level of comfort and 
the prospective comfort if they were to move to a particular cell. If they find a nearby, more comfortable 

cell than their current cell, they move to that cell. Agents also have a right-moving tendency; if all cells are 
equally comfortable, agents prefer moving to the right compared to staying in the current cell, etc. 

Desire-Driven Agents prefer moving to cells with the highest desirability for them as long as the 
movement is not too uncomfortable. The desirability of cells may change after a certain time, and the agents 
should react accordingly to those changes. 

All reactive agents considered in this work (see Table 2) can react to their environment based on 

comfort only (comfort-driven agents), desire only (desire-driven agents), or a combination of both. With 
this method, we can observe the interplay between desire and comfort and see what happens when both 
behaviors are equally important or when one dominates the other. 



Jawad, Ruiz-Martin, and Wainer 
 

 

3.1 Reactive Agents Formal Specification 

This section provides the formal specification for the Reactive Agents model. 

3.1.1 Neighborhood Selection 

We selected the extended Moore neighborhood to use in our model. This choice allows us to model the 
agent’s movement in all eight cardinal (North, South, East, West) and ordinal directions (Northeast, 
Northwest, Southeast, Southwest), as shown in Figure 3. The cell marked in green and yellow represents 
the agent and its immediate neighborhood, respectively, whereas the grey cells represent the extended 
neighborhood. This second level allows us to implement more complex behaviors and avoid conflict with 
any other agent competing for the same cell from all straight and diagonal directions. 

 
Figure 3: Cell neighborhood.  

3.1.2 Formal Specification 

The ReactiveAgents atomic model is formally specified as follows: 
RA_Atomic = < X; Y; S; N; type; d; τ; δint; δext; λ; ta > 

 X = Y = {Ø} 

 S = {agent, cell, heat, pressure, wetness, desirability} as detailed in section 3.1.3 
 N = {(-2;-2); (-2;-1); (-2; 0); (-2; 1); (-2; 2); (-1;-2); (-1;-1); (-1; 0); (-1; 1); (-1; 2); (0;-2); (0;-1); (0; 0);  
 (0; 1); (0; 2); (1;-2); (1;-1); (1; 0); (1; 1); (1; 2); (2;-2); (2;-1); (2; 0); (2; 1); (2; 2)} 
 type = transport; 
 d = 100; // in milliseconds 
 τ: N →S; as defined by the rules in section 3.1.5 

 δint; δext; λ; and ta are defined using the Cell-DEVS specification, and the definition is not needed by 
the user. 

The ReactiveAgents coupled model is formally specified as follows: 
RA_Coupled = < Xlist; Y list; X; Y; I; η; N; {r,c}; C; B; Z; select > 

 Xlist = Ylist = {Ø} 
 X = Y = {occ, celltype, comfort, desire} as detailed in section 3.1.4 

 I = < Px; Py > 
 η = 25; 
 N= {(-2;-2); (-2;-1); (-2; 0); (-2; 1); (-2; 2); (-1;-2); (-1;-1); (-1; 0); (-1; 1); (-1; 2); (0;-2); (0;-1); (0; 0);  
 (0; 1); (0; 2); (1;-2); (1;-1); (1; 0); (1; 1); (1; 2); (2;-2); (2;-1); (2; 0); (2; 1); (2; 2)} 
 C = {Cij / i ∈ [0; 9]; j ∈ [0; 9]} 
 B = Ø; // wrapped border 

 Z = the translation function as defined in the formalism 

3.1.3 State Variables 

Each cell is defined based on six state variables: 
cell: defines the terrain type specified in Table 1: {0.001, 0.002, 0.003, ... 0.009} 



Jawad, Ruiz-Martin, and Wainer 
 

 

agent: the type of agent in each cell. The agent state can take four values: 0 (i.e., no agent), 1 (i.e., 
human agent - afraid of fire), 2 (i.e., Fiery Monster agent - afraid of water), and 3 (i.e., Vapor Alien agent 
- afraid of pressure). 

heat: defines the amount of fire heat in each cell: {0, 1, 2, ... 100} 
pressure: defines the amount of wind pressure in each cell: {0, 1, 2, ... 100} 
wetness: defines the amount of water wetness in each cell: {0, 1, 2, ... 100} 
desirability: defines the desirability of a cell to an agent from 0 (no desirability) to 0.99 (the 

maximum desirability). Specific levels of desirability is defined as a real number ∈ [0, 0.99] 
All cells are initialized with certain heat, pressure, and wetness levels. The values assigned are based 

on the type of terrain based on the values specified in Table 1. The desirability of the cell is also initialized. 
The agent cell is also initialized based on the number of agents at the start of the simulation and their 

locations. 

3.1.4 Neighbor Ports 

We define four ports: 
occ: depending on the type of simulation being performed, outputs the value of either the agent 

variable or a sum of the agent variable and another additional value. This is the primary port that will be 
used to visualize the simulations. 

celltype: outputs the value of the cell state variable. 
desire: outputs the value of the desire state variable. 
comfort: outputs the value after calculating the comfort of a certain agent using the heat, pressure, 

and wetness state variables of the level 1 Moore neighborhood, and the assigned weights to each of them. 

The comfort level (CL) of an agent is defined as:  
CL=heat*W_H + pressure*W_P + wetness*W_W 

W_H, W_P, and W_W are the weight of the discomfort felt by the agent because of heat, pressure, and 
wetness, respectively. Table 2 represents the agents and weights assigned to W_H, W_P, and W_W. Note 
that these values can be modified to simulate other types of agents. 

 

Table 2: Types of Agents and associated element weights. 

Agent ID Agent Type W_H W_P W_W 

Primary Agents 

Agent01 Human 0.008  0.002 0.001 

Agent02 Fiery Monster 0.0 0.001 0.009 

Agent03 Vapor Alien 0.0001 0.0098 0.0001 

Secondary Agents 

Agent04 N/A 0.005 0.005 0 

Agent05 N/A 0 0.005 0.005 

Agent06 N/A 0.005 0 0.005 

Agent07 N/A 0.0033 0.0033 0.0033 

3.1.5 Rules 

We define the behavior of reactive agents based on the following set of rules: 

The Insta-death Rule: If an agent has reached or exceeded the extreme discomfort level (in our case, 
defined as 80% CL) using the equation presented in section 3.1.4, that agent dies, and the value of the 
agent state variable changes to zero. An excellent example of this would be human agents on volcanoes, 
where the comfort level of volcano cells for human agents is exactly 80%. This rule is the first to be 
evaluated. If the agent dies, the rest of the rules are ignored. 



Jawad, Ruiz-Martin, and Wainer 
 

 

The Movement Rules: These determine the agents’ movement upon confirming the comfort values of 
neighboring cells or desire based on their type of behavior. These rules also contain priority between agents 
when two agents of different types try to occupy the same cell. If there is a clear winner among all 

neighboring cells, the agent will move to that cell, becoming more comfortable than before or being in a 
more desirable cell based on the agents’ behavior. In case of a tie, agents always try to move toward the 
right if possible.  

The Default Rule: This rule is evaluated when all other rules fail to satisfy and therefore has the lowest 
priority. If none of the other rules apply, the cell state of the cell remains the same. 

4 SIMULATION RESULTS AND ANALYSIS 

In our experiments, agents start anywhere in the terrain and try to cross the terrain from left to right without 
colliding with any other agent in the system. They have a right-moving behavior (i.e., if two cells have the 
same comfort, desire, etc., they decide to move to the right). Note that more complex behaviors can also be 
implemented. We performed several experiments. For visualization purposes, dark green represents agents 
in the uncomfortable state and light green represents agents in the comfortable state. 

4.1 Simulating Single Comfort-driven Agents 

In the first experiment, we run simulations where all agents are Comfort-driven agents of the same type. 
The initial configuration is shown in Figure 4, with the ten agents represented in dark green. 

 
Figure 4: Initial configuration. 

Figure 5 shows a complete run of this experiment using ten human agents until the simulation reaches 

a steady state. We can see the game terrain from a human agent’s point of view (POV) without and with 
agents in the first two snippets. In Step 1, the two agents previously standing on volcano terrains die 
immediately, and the number of agents goes down to eight. Simultaneously, agents in the middle move to 
the river, and agents to the top-left move to areas with drizzle to become more comfortable, as water is the 
most preferred element for human agents. In subsequent steps, we can see both agents in the middle and to 
the top-left becoming comfortable (less than 10% discomfort). One agent moves through the river until it 

finds a drizzle terrain on the other side of the wrapped boundary and becomes comfortable by moving to it. 

   
Figure 5: Full simulation run with ten comfort-driven human agents.   

 
Figure 6: Final state of a complete simulation run with ten agents behaving as comfort-driven agents. 



Jawad, Ruiz-Martin, and Wainer 
 

 

For all the other agents, we show the original terrain and final state of the simulation (Figure 6). In each 
image, the terrain view corresponds to that agent’s comfort level in each cell, and the original terrain is also 
provided for easier comparison. 

For human agents, (Agent01), drizzle terrains seem to be the most comfortable location. Eight agents 
out of ten survive, and 100% of the surviving agents become comfortable. 

Interestingly, fiery monster agents (Agent02) prefer lava cells over heated cells due to their aversion to 
water present in such cells. Their high fire tolerance makes both volcano and lava cells comfortable, with 
lava cells being slightly more comfortable. The agent whose initial position is the river dies at the beginning, 
and out of the remaining nine, eight end up in a comfortable state. 

For vapor aliens (Agent03), tornado cells are deadly, causing the fatality of three agents at the 
beginning. There are no cells where these agents can feel comfortable; hence, all seven remaining aliens 
stay uncomfortable until the simulation ends. 

Agent04 shows very similar behavior to human agents and prefers drizzle cells over others. However, 
since no strong discomfort is felt due to any element, no agents die at the beginning, and nine out of ten 
agents become comfortable. Agent05 ends up occupying lava cells exclusively due to their low pressure 

and wetness value. Although all agents survive, none of them are able to reach a comfortable state.  
The preference for Agent06 is all over the place, but they only become comfortable when occupying 

breeze cells. All ten agents survive, and 40% of them end up being comfortable. Agent07 does not feel 
particularly uncomfortable in any of the cells, as seen from the high density of yellow cells in the terrain. 
However, this also means that the reverse is true, and there is not a single cell where these agents are able 
to become comfortable. As such, all surviving ten agents remain uncomfortable. 

Overall, this experiment allowed us to see some interesting behavior from different agent types and the 
flexibility to model different agents in varying simulation terrains. 

4.2 Simulating Multiple Comfort-driven Agents 

When simulating multiple comfort-driven agents, we remove the death rule as we do not want agents to 
die. Instead, we are interested in observing how they interact when different agent types are placed together. 

We performed two experiments with several units of multiple agent types placed together. Figure 7 

presents 15 agents with five units of all three agent types scattered throughout the game terrain. Human, 
monster, and alien agents are depicted in green, dark blue, and magenta, respectively. The game terrain 
retains its original terrain colors, as it is impossible to show the comfort level of all three agent types 
simultaneously. For conciseness, we only show the initial, final, and first two steps of each experiment. 

 
Figure 7: Experiments with multiple types of comfort-driven reactive agents. 

In experiment 02, five trios of all three agent types are placed in the four corners and the middle of the 
map. During different steps, although the agents in the middle start moving based on their comfort in certain 
cells, the agents in the corners barely shift their position. Eight out of ten corner agents retain their starting 

position at the end. This is because all corners are connected due to our wrapped border, and the agents are 
negating the directional movement of each other due to being too close together. 

In experiment 03, five trios of all three agent types are placed again on the map. However, the difference 
this time is in the placement change of the corner agents, allowing them more room to move around. This 
results in improved behavior in the directional movements, and all but two agents end up moving to different 
positions than their starting position. 

These experiments allowed us to observe the reactive movement of multiple agent types simulated 
simultaneously. While the model can be easily scaled to include as many agent types as we want, careful 



Jawad, Ruiz-Martin, and Wainer 
 

 

consideration must be placed on the number of rules and the priorities, as the inclusion of a single agent 
type involves adding, at a minimum, sixteen directional rules, and redefinition of the priorities. 

4.3 Simulating Reactive Explorers 

In many games, the game terrain is not immediately visible to the agents unless they can access a map. 
Many real-time strategy games (e.g., Age of Empires franchise, Warcraft) start with unexplored maps at 
the beginning. Only those portions of the terrain with buildings or agents under the player’s control are 
visible to the player. Unexplored areas can be explored by moving an explorer agent (e.g., a scout) through 
those areas, and the revealed area depends on the visual capability of the explorer agent. 

To add the area exploration capability to our agents, we replace our Insta-death rule with the Area 

Exploration rule. This rule states that every time an agent occupies or moves to a cell, it reveals all 
unexplored cells in its immediate neighbor. To deal with the unexplored state of a cell, we add a new state 
variable visibility that keeps track of explored and unexplored cells. All cells in the map start as 
unexplored (visibility set to 0) and become visible when explored by a neighboring agent (visibility set to 
1). A new neighbor port explored outputs the visibility status of a cell to its neighbors.  

Figure 8 shows the reactive exploratory behavior of one single human agent. Gray cells represent 

unexplored areas and turn into cells matching those of our original game terrain as they are explored. The 
agent is placed at the cell with coordinates (5,5) at the beginning, and the explored neighborhood around 
the cell can be seen clearly. The agent explored all areas that could be comfortably explored and ended up 
in a comfortable position. 

 
Figure 8: Exploratory behavior of a single human agent 

Figure 9 shows the initial state and the simulation results of the nine human agents placed in the game 
terrain; four agents occupy the four corners, four others occupy the cell in the middle of the borders, and 
one additional agent occupies a cell in the middle. 

 
Figure 9: Muti-agent exploratory behavior with nine human agents. 

In this experiment, 81% of the cells become visible after all agents finish their exploration and end up 
flocking to the top-left drizzle cells of the map. 

These experiments allowed us to see the interesting exploratory behavior of both single and multiple 

agents placed in the game terrain and observe the relationship between agents facing changes during 
movement and the area explored. Note that other exploratory or viewing behaviors can be implemented. 

4.4 The Desire-Driven Agent Model 

The main objective of games is to achieve a mission. Based on this mission, agents might display 

entirely different behavior. The desire to achieve the mission has a clear contention with how comfortable 

the agent feels while moving towards their goal. In this section, we investigate the interplay between desire 

and comfort and how agents with different levels of these parameters react. 



Jawad, Ruiz-Martin, and Wainer 
 

 

We update our model to add the capability of agents to make decisions based on both desire and 

comfort. An additional state variable called inclination now considers both the comfort level and 

desirability (calculated as explained in section 3).  

The inclination is calculated as follows: 
I = CL * W_C + D * W_D 

W_C and W_D represent the weight of comfort and desire for the specific type of agent being modeled. 

Based on this idea of weights, table 3 presents the five different types of agents that we experiment on. 

All experiments will be performed using a human agent with the comfort level as defined in Table 2. All 

experiments done until now have been done with purely reactive agents (R-01) that do not respond to the 

desirability of cells, and as such, we do not show results for these agents any further.  

 

Table 3: preference percentage of comfort and desire for each agent. 

Agent ID Agent Type Comfort Preference Desirability Preference 

R-01 Purely Reactive  100% 0% 

R-02 Highly Reactive  75% 25% 

R-03 Evenly Weighted  50% 50% 

R-04 Highly Goal-directed  25% 75% 

R-05 Purely Goal-directed 0% 100% 

 

We have kept the Insta-death rule as we want to analyze whether, and at what level of desire, agents 

are willing to give their lives to reach their goal. All movement rules have been updated to include the 

preference port, and agents now react and make decisions based on their preference for a certain cell. 

We perform an experiment where we try to see the behavior change in human agents as their preference 

changes due to the increasing desirability of cells over time. The results are shown in Figure 10. The game 

terrain shows the preference from a human agent’s POV and uses the same color profiles used along the 

paper to depict the comfort level. This experiment has three objective cells with maximum desirability with 

a position identical to the initial destinations shown at the top of Figure 10 in purple. Over time, desire from 

objective cells spreads through the cells to the left, which can be seen by those cells taking lower (more 

desirable) preference values. The two objective cells at the right border require agents to walk over volcano 

cells (V) to reach them. This will allow us to understand the forces between desirability versus comfort. 

Type R-01 Agents react purely based on their comfort (100%), so the spread of desirability does not 

affect them. The results from these agents are the same as in Figure 5, and thus, not shown in Figure 10. 

Type R-02 Agents are highly reactive (75% comfort, 25% desire) and produce results similar to Type 

R-01 agents. The two agents standing on volcano cells die at the beginning, and most agents end up flocking 

to the top-left drizzle cells. The big difference is seen in agents close to the highly desirable objective cells. 

One agent in the middle does not move into the river but prefers to stay on the objective cell (a heated cell 

and therefore less comfortable) due to the high preference resulting from high desire values. Another agent 

that started in the river, instead of moving through the river, waits for the objective cells to be unoccupied 

to move to that. This, however, never happens because the objective cell never becomes unoccupied. One 

other agent at the top-right stays close to the highly desirable target. In contrast, another agent at the bottom 

travels halfway from its initial position to the bottom-right objective. The agent that stopped halfway was 

due to the insufficient desire of the next right cell for it to move from the drizzle cells to river cells. 

Type R-03 Agents have the same comfort and desire values (50% for both) and end up in a final state 

very similar to that of Type R-02 Agents. One slight difference is the agent at the bottom being able to 

move one step to the right due to the increased percentage of desire, making that river cell the preferred 

destination for itself. 



Jawad, Ruiz-Martin, and Wainer 
 

 

 

 
Figure 10: Desire-driven human agent behavior 

 

Type R-04 Agents are highly goal-driven agents (25% comfort, 75% desire) and produce the same final 

state as the previous experiment. Therefore, we slightly modify these agents to have a higher desire (10% 

comfort, 90% desire), which shows a drastic change in emergent behavior in agents. The agent at the 

bottom, due to its very high desire to reach the bottom target, steps over the volcano cell at step 7, while 

another agent at the top-left, until now stuck right before the fire-attribute cells for all experiments, takes 

its first step towards the top objective. The bottom agent dies at step 8, whereas the to-left agent follows 

the same tragic fate by stepping into the volcano cell at step 9. Only six agents are left in the final state. 

Type R-05 Agents are driven purely by desire (100%), so their movement does not consider the terrain 

type at all. This can be seen by the top three agents, previously stuck at drizzle cells, now moving directly 

right, ignoring everything in their path. The bottom agent dies one step earlier at step 6. One interesting 

thing happens in the case of the previously dead top-left agent. When it tries to move to the path with higher 

desirability (step 4 to step 5), it moves past the volcano cell as the lava cell has much higher desirability 

due to the reduced propagation value, which allows it to survive. This is an interesting emerging behavior 

as it had to die when it cared about comfort and survived when it did not care about comfort at all. In the 

end, seven agents out of the starting ten survive. 

This series of experiments confirmed that agents are willing to die for their cause if the desire to reach 

their objective is adequately high. Further experiments can be performed to better understand the emergent 

behavior seen for different combinations of desire and comfort. 



Jawad, Ruiz-Martin, and Wainer 
 

 

5 CONCLUSIONS 

In this paper, we developed a model of reactive game agents in the Cell-DEVS modeling formalism, where 
agents can react to environmental changes based on their comfort and desire. To verify model correctness, 

we performed several experiments demonstrating the comfort-driven, exploratory, and desire-driven 
behavior of multiple agents in a fixed game terrain containing nine different terrain types. Cell-DEVS 
allows for rapid design, prototyping, and analysis of reactive agents using formal modeling and simulation. 

Our experiments proved that agents could react to their surrounding environment by determining the 
best course of action based on where they felt more comfortable or which direction led them to more 
desirable goals. The exploratory behavior of agents led to agents revealing unexplored part of the game 

terrain based their comfort-driven movement. Moreover, we determined that agents with a highly desire-
driven nature are willing to ignore their discomfort and walk to their death if that meant that they would 
reach their desired objective. 

The experiments allowed us to dive deep into the dynamic behavior of different game agents and gain 
insight into modeling intelligent reactive agents. The study presented could help investigate various other 
phenomena by simulating game agents with additional capabilities and constraints in intricate game 

environments to discover hidden, unintended, or undesired interactions alongside flexible decision-making. 

REFERENCES 

Carmel, D., and S. Markovitch. 1996. “Learning models of intelligent agents”. In Proceedings of the thirteenth national conference 

on Artificial intelligence-Volume 1, 62–67 

Gon, K. T., B. P. Zeigler, and H. Praehofer, “Theory of modeling and simulation: integrating discrete event and continuous complex  

 dynamic systems,” 2000. 

Lopez, A, and G. Wainer, “Improved cell-DEVS model definition in cd++,” in International Conference on Cellular Automata, pp. 

803–812, Springer, 2004. 

Sweetser, P and J. Wiles, “Combining influence maps and cellular automata for reactive game agents,” in International Conference 

on Intelligent Data Engineering and Automated Learning, pp. 524–531, Springer, 2005. 

Sweetser, P., Johnson, D., Sweetser, J. and Wiles, J.: Creating Engaging Artificial Characters for Games. Proceedings of the Second 

International Conference on Entertainment Computing. Carnegie Mellon University, Pittsburgh, PA (2003) 1-8 

Vinyals, O., I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et 

al. 2019. “Grandmaster level in StarCraft II using multi-agent reinforcement learning”. Nature 575(7782): 350–354. 

Wainer G., “Cd++: a toolkit to define discrete-event models,” Software, Practice and Experience, vol. 32, pp. 1261–1306, 2002. 

Wainer G. and N. Giambiasi, “Application of the cell-DEVS paradigm for cell spaces modelling and simulation,” Simulation, vol. 

76, no. 1, pp. 22–39, 2001. 

Wainer G, Q. Liu, O. Dalle, and B. P. Zeigler, “Applying cellular automata and DEVS methodologies to digital games: A survey,” 

Simulation & Gaming, vol. 41, no. 6, pp. 796–823, 2010. 

Weber, B. G., M. Mateas, and A. Jhala. 2011. “Building human-level ai for real-time strategy games”. In 2011 AAAI Fall 

Symposium Series. 

AUTHOR BIOGRAPHIES 

ALVI JAWAD is a Ph.D. student in the Department of Systems and Computer Engineering at Carleton University (Ottawa, ON, 

Canada). He received his M.A.Sc. degree in Electrical and Computer Engineering in 2021 from Carleton University. His research 

interests involve intelligent agents and using formal model-based approaches to assess the cybersecurity of critical infrastructures. 

His email address is alvi.jawad@carleton.ca, and his website is https://carleton.ca/cybersea/people/alvi-jawad. 
 
CRISTINA RUIZ MARTIN is an Instructor at the Department of Systems and Computer Engineering at Carleton University 

(Ottawa, ON, Canada). She received the DEVS Modeling and Simulation Ph.D. Dissertation Award from SCS (2019) and the 

Young Simulation Scientist Award from SCS (2020). She has been a member of the Board of Directors of SCS since July 2021. 

Her email address is cristinaruizmartin@sce.carleton.ca, and her website is https://carleton.ca/sce/people/ruiz/ 
 
GABRIEL WAINER is a Professor at the Department of Systems and Computer Engineering at Carleton University (Ottawa, 

ON, Canada). He is the author of three books, over 320 research articles, and the editor of four other books. He is the head of the 

Advanced Real-Time Simulation lab at Carleton University. He has received various awards, including the IBM Eclipse Innovation 

Award, SCS Leadership Award, and Best Paper awards. He is a Fellow of SCS and a member of the Board of Directors of SCS. 

His email address is gwainer@sce.carleton.ca, and his website is http://www.sce.carleton.ca/faculty/wainer. 

mailto:alvi.jawad@carleton.ca
https://carleton.ca/cybersea/people/alvi-jawad/
mailto:cristinaruizmartin@sce.carleton.ca
https://carleton.ca/sce/people/ruiz/
mailto:gwainer@sce.carleton.ca
http://www.sce.carleton.ca/faculty/wainer

